Raman scattering in a two-layer antiferromagnet.

نویسندگان

  • Morr
  • Chubukov
  • Kampf
  • Blumberg
چکیده

Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two-layer systems, such as YBa2Cu3O61x . We present a theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the interlayer exchange coupling J2 for the Raman spectra in A1g and B1g scattering geometries both in the nonresonant regime ~when the Loudon-Fleury model is valid! and at resonance. We show that within the Loudon-Fleury approximation, a nonzero J2 gives rise to a finite signal in A1g scattering geometry. Both in this approximation and at resonance the intensity in the A1g channel has a peak at small transferred frequency equal to twice the gap in the spin-wave spectrum. We compare our results with experiments in YBa2Cu3O6.1 and Sr2CuO2Cl2 compounds and argue that the large value of J2 suggested in a number of recent studies is incompatible with Raman experiments in A1g geometry. @S0163-1829~96!06126-7#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-magnon Raman scattering in a spin density wave antiferromagnet

We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with ‘triple resonance‘ phenomena in the vertex function the resulting intensity line shape i...

متن کامل

Investigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers

In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...

متن کامل

Magnetic raman scattering in two-dimensional spin-1/2 Heisenberg antiferromagnets: Spectral shape anomaly and magnetostrictive effects.

We calculate the Raman spectrum of the two-dimensional (2D) spin-1/2 Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo techniques on clusters of up to 144 sites and, on a 16-site cluster, by considering the phonon-magnon interaction which leads to random fluctuations of the exchange integral. Results are in good agreement with experiments on various high-Tc precursors,...

متن کامل

Phonon anomalies, orbital-ordering and electronic raman scattering in iron-pnictide Ca(Fe0.97Co0.03)2As2: temperature-dependent Raman study.

We report inelastic light scattering studies on Ca(Fe0.97Co0.03)2As2 in a wide spectral range of 120-5200 cm( - 1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at Tsm ~ 160 K. The mode frequencies of two first-order Raman modes B1g and Eg, both involving the displacement of Fe atoms, show a sharp increase below Tsm. Concomitantly,...

متن کامل

Spectroscopy, Structural, and Optical Investigations of NiFe2O4 Ferrite

Ni ferrite crystalline material is synthesized using a sol-gel method at two different temperatures. The vibrational and stretching modes, crystalline phase, size distribution and morphology of the products are investigated via Raman back-scattering and Fourier transform infrared (FTIR) spectroscopy, XRD and FESEM, respectively. Vibrational modes of spinel ferrite are observed at Raman and FTIR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. B, Condensed matter

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 1996